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Higher-order implicit numerical methods which are suitable for stiff stochastic 
differential equations are proposed. These are based on a stochastic Taylor 
expansion and converge strongly to the corresponding solution of the stochastic 
differential equation as the time step size converges to zero. The regions of 
absolute stability of these implicit and related explicit methods are also 
examined. 
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1. iNTRODUCTION 

Stochastic differential equations are being increasingly used to model the 
effects of noise on complex physical systems. Since analytic solutions are 
rarely available in practical situations, numerical simulations of the 
equations are required. However, heuristic adaptations of deterministic 
numerical methods to stochastic differential equations have been found to 
have serious shortcomings. Thus the development of efficient numerical 
methods for stochastic differential equations has become essential if 
significant advances are to be made in this field. Greiner e t  al. (6) have 
discussed the issues involved in applying numerical methods to stochastic 
differential equations and have indicated many questions which remain to 
be resolved. An extensive review of the existing literature on this subject 
was given in Kloeden and Platen. (1~ Other surveys can be found in 
Pardoux and Talay/17/and Milstein. (16) 
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The numerical stability of a scheme is often crucial for its successful 
application. It is well known from deterministic numerical analysis that the 
numerical integration of stiff systems requires the use of implicit methods 
which are much more stable numerically. Many important physical problems 
in a stochastic setting also involve stiff systems, for which several authors 
have applied implicit stochastic numerical schemes. In particular, we 
mention the papers of Klauder and Petersen, ~9) Smith and Gardiner, ~24) 
McNeil and Craig, ~14) Drummond and Mortimer, (5) Hernandez and 
Spigler, (8) and Petersen. (18/ Earlier results in this direction can be found in 
Talay (25) and Milstein. (16) 

We shall begin this paper with a precise definition of stiffness for 
stochastic differential equations which reduces to the usual definition for a 
deterministic differential equation in the absence of noise. Then we 
systematically describe higher-order numerical schemes which are strongly 
convergent and based on the stochastic Taylor expansion. Such schemes 
are essential for the direct simulation of trajectories of a diffusion process 
X solving a stochastic differential equation such as in nonlinear filtering or 
the simulation of stochastic flows where good approximations of the paths 
are required. As in Kloeden and Platen, (1~ we say that an approximation 
Y~ of a solution X converges with strong order 7 > 0 as the time step 6 ~ 0 
if there exists a finite constant K not depending on 6 such that 

E I X ~ -  Y~I = ( I X r -  Y~I ) ~ < K ~  

Here the approximation Y~ must always be generated by the same 
trajectory of the Wiener process as the sample path of the solution X of the 
stochastic differential equation. In Section 8 we shall state a theorem 
involving conditions for pathwise convergence. In contrast, to approximate 
functionals of the solution such as Eg(Xr)) we need only weak approxima- 
tions which are often easier to use as the random variables simulating the 
noise can take a simpler form. As in Kloeden and Platen, ~1~ we say that 
an approximation Y~ converges weakly with order fl > 0 as ~ ~ 0 if for 
each polynomial g there exists a finite constant Kg not depending on 6 such 
that 

IEgIX )- Eg(v )l = 

Here we are essentially approximating the probability measure induced by 
the solution X. We note that a weak scheme of a given order will usually 
differ in structure from a strong scheme of the corresponding order. 

We shall present new families of implicit schemes which are well suited 
to stiff stochastic systems and avoid some of the pitfalls inherent in fully 
implicit schemes that have been suggested by earlier authors. We shall 
define and investigate numerical stability, asymptotic numerical stability, 
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A-stability, and regions of absolute stability for these stochastic numerical 
schemes. This concept of A-stability and its results turn out to be direct 
transformations of their well-known deterministic counterparts to the 
stochastic context. Moreover, an A-stable stochastic scheme is also 
A-stable in the deterministic sense when applied to ordinary differential 
equations. 

In addition we shall derive some two-step strong stochastic schemes. 
Finally, we shall present some numerical results, which clearly indicate the 
improved stability and convergence order of the implicit schemes. 

2. ST IFF  S T O C H A S T I C  D I F F E R E N T I A L  E Q U A T I O N S  

We shall consider a d-dimensional Ito stochastic differential equation 

dX, = a(X,) dt + b(X,) dW, (2.1) 

for O<<.t<~T with initial value X o ~  a, where a ( x ) =  {ak(x)}~=l is the 
d-dimensional drift and b ( x ) =  {b~(x)}~=l is the d-dimensional diffusion 
coefficient. Here W = { IV,, t >~ 0 } denotes a standard scalar Wiener process 
with 

E w , =  ( w , ) = o  

and 

EWsW,= ( W,W,)=min{s,  t} 

for s, t ~> 0. Most of the results of this paper also hold true for a multi- 
dimensional Wiener process and for time-dependent drift and diffusion 
coefficients, but we shall restrict attention to the above case in order to 
simplify the exposition. 

From the mathematical viewpoint it is more convenient to write (2.1) 
in integral form as an Ito stochastic equation 

Xt= X o + f~ a(Xs) ds + f~ b(Xs) dWs (2.2) 

where the second integral is an Ito integral, which does not follow the rules 
of ordinary calculus. Correcting the drift term to 

_~(x) = a(x) - ~ ~ =~ b~(x) (x) 
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we can also express this with respect to a Stratonovich integral, which we 
shall distinguish with a o, obtaining the corresponding Stratonovich 
stochastic equation 

X , = X o +  a_(X,)ds+ b(Xs)odW , (2.3) 

for the same Ito process X =  {Xt, 0 <<. t <~ T} as in (2.2). For further details 
on stochastic calculus and stochastic differential equations we refer to 
Arnold (1) or Kloeden and Platen. (12) 

We shall assume that the drift and diffusion coefficients a and b satisfy 
Lipschitz and linear growth conditions, to ensure the existence and 
uniqueness of a strong solution of (2.2). For  the proofs of convergence of 
higher-order numerical schemes we shall also suppose that a and b are 
sufficiently smooth and that all moments of the initial value Xo exist, that 
is, 

EIXo[q= (IXo[ q) < Go (2.4) 
for q =  1,2 ..... 

In order to define stiff stochastic differential equations, we need 
to introduce Lyapunov exponents. We suppose that the Stratonovich 
equation (2.3) has a stochastic stationary solution -Yt (see Hasminski (7)) 
and then linearize about J(, to obtain the linearized system 

+ fo _A(s)Zsds + fo' B(s)Z, odW, (2.5) Z,= Zo 

where _A and B are random d x d matrices defined componentwise by 

and 

_A(t) ~ = ~ (J(,) (2.6) 

B(t) ~ c~bi = ~x--- 5 (Jft) (2.7) 

for i, j = 1 ..... d. Then by the multiplicative ergodic theorem of Osceledec 
(see Arnold and Wihstutz (2)) there exist d nonrandom Lyapunov exponents 

2a<<.2a 1<~ "" <~1 

and a partitioning of ~d  into random subsets Ea(co), Ea 1(~o) ..... El(o~) 
such that for the solutions of (2.5) starting in these sets the limits 

2(Zo)= lim l l n  IZ,[ (2.8) 
, ~  t 

take the values 2a, t a_  1,..-, 21, respectively. 
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We shall say that the linear stochastic equation (2.5) is stiff if its 
Lyapunov exponents satisfy 

)~d "~ ,~ 1 (2.9) 

More generally, we shall say that a stochastic equation (2.3) is stiff if its 
linearization (2.5) about some stationary solution is stiff. Note that if the 
original equation (2.3) has additive noise on linearizing about a stationary 
solution, we obtain a degenerate linear equation (2.5) in which B(t) = 0 but 
A_(t) is a random matrix-valued function. 

This generalizes the deterministic concept of stiffness, since the real 
parts of the eigenvalues of the coefficient matrix of a deterministic linear 
differential equation are its Lyapunov exponents. Moreover, a stiff 
deterministic equation is also stiff in the stochastic sense. Thus stochastic 
stiffness also refers to the behavior of solutions having two or more widely 
different time scales. It is this large difference in time scales that gives rise 
to difficulties in numerical investigations of stiff deterministic systems as 
well as stiff stochastic systems. 

3. STRONG C O N V E R G E N C E  A N D  STABILITY OF S T O C H A S T I C  
N U M E R I C A L  S C H E M E S  

For convenience we shall restrict our attention to equidistant time 
discretizations of the interval [0, T]  with points 

%=nA (3.1) 

for n = 1,..., n r  with step size A = T/nr for some n r =  1, 2 ..... The simplest 
time discrete approximation then is given by the Euler scheme 

Yn+, = Y,+a(Yn) A +b(Yn)AW~ (3.2) 

for n = 0 ,  1, 2 ..... with Y~ =X0,  where AWn= W~.+,- W~, is the increment 
in the Wiener process and is normally distributed with zero mean and 
variance E(AW,)2=((AW,)Z)=A.  This scheme provides a recursive 
algorithm for simulating approximate solutions of the stochastic equation 
(2.2) and hence also (2.3). 

In this paper we shall only consider approximations which converge 
strongly to the solutions of (2.2) and (2.3), that is, with the trajectories 
becoming closer and closer as the step sizes A decreases to 0. To be precise, 
we shall say that a time discrete approximation Y~ converges strongly with 
the strong order 7 > 0 to the corresponding solution X of the stochastic 
equation (2.2) if the estimate 

E [ X r -  Y~I = < IXT- Y~T[ ) <~ KA~ (3.3) 

822/66/1-2-19 
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holds for each A e (0, 1), where K is a positive constant which does not 
depend on A. 

The criterion (3.3) is thus a straightforward generalization of the order 
of convergence of deterministic schemes, to which it reduces in the absence 
of noise. However, it turns out under Lipschitz and linear growth conditions 
on a and b that the Euler scheme (3.2) converges with the strong order 

= 0.5, in contrast with the order 1.0 for the deterministic Euler scheme 
(e.g., see Platen(19~). This is a direct consequence of the differences in the 
deterministic and stochastic calculi. 

To handle stiff stochastic differential equations in particular and error 
propagation in general we need a counterpart of the deterministic concept 
of numerical stability for stochastic numerical schemes. 

Let Y~ denote a time discrete approximation with step size A ~ (0, 1) 
which starts at Y~ at time t = 0  and let Ya be the corresponding 
approximation which starts at Yo ~. We shall say that the time discrete 
approximation Y~ is stochastically numerically stable for a given stochastic 
equation (2.2) if for any time interval [0, T ]  there exists a positive 
constant A o such that 

lim max e(IYff- Fffl >~e)--0 (3.4) 
IY~ r0~t~o 0~<n~<nT 

for each e > 0  and each A t(O, Ao), where P denotes the underlying 
probability measure. Essentially, this says that the scheme is continuous in 
initial conditions uniformly on finite time intervals. More generally, we 
shall say that the time discrete approximation is stochastically numerically 
stable if it is stochastically numerically stable for the class of stochastic 
equations for which the approximate solution converges strongly with 
some order 7 > 0 to the corresponding solution of the stochastic equation. 
All of the one-step schemes proposed in this paper will turn out to be 
stochastically numerically stable. 

We emphasize that the stochastic numerical stability criterion applies 
only to step sizes A > 0 that are less than some critical value A o which 
usually depends on both the particular time interval [0, T ]  and the 
stochastic equation under consideration. However, this critical value may 
be extremely small in some cases. As the time interval [0, T ]  becomes 
relatively large, the propagated error of what is nominally a stochastic 
numerically stable scheme may in fact become so unrealistically large as to 
make the approximation useless for some practical purpose. To exclude 
such cases, we shall say that a time discrete approximation yA is asymptoti- 
cally numerically stable for a given stochastic equation if there exists a 
positive constant A a such that 

lim lim P( max l Y e -  Y~] ~>e)=0 (3.5) 
I~'~- z0~l~o r ~  o~<~T 
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for each e > 0 and each J e (0, Aa), where we have used the same notation 
as in (3.4) (recall that T / n r = A  here). In general we can only have 
asymptotic numerical stability when the stochastic differential equation has 
an asymptotically stable, stationary solution such as an ergodic solution. 

As with the A-stability of deterministic differential equations, (4) we can 
also consider asymptotic numerical stability of a stochastic scheme with 
respect to an appropriately restricted class of stochastic differential 
equations. We shall choose the class of complex-valued linear test equations 

d X  t = 2 X  t dt + d W t  (3.6) 

where the parameter 2 is a complex number with real part Re(2)< 0 and 
W is a real-valued standard Wiener process. This represents a simple 
stochastic generalization by including additive noise in the deterministic 
test equations used to test for the A-stability of deterministic schemes. Also 
in the stochastic case the critical value Aa will depend on the parameter 2. 
We know from Hasminski (7) that (3.6) has an ergodic solution when 
Re(2) < 0, which makes these equations a good choice of test equations for 
situations involving additive noise as well as for other noises. 

We can write (3.6) as a 2-dimensional Ito stochastic differential equation 
with linear drift and constant diffusion coefficients in terms of the 
components (X1, X~), where X =  X 1 + iX2, namely 

c 1 
at + aw, 

where/[  = 21 + i/[ 2.  

Suppose that we can write a given scheme with equidistant step size A 
applied to the test equations (3.6) with Re().)< 0 in the recursive form 

Y2+, = G(2A) Y~ + Z~ (3.7) 

for n = 0, 1,..., where G is a mapping of a subset of the complex numbers 
into itself and the Z0 ~, Z~,... are random variables which do not depend on 
/[ or the Yg ..... Y~+~. Then we shall call the set of complex numbers /[A 

with 

/[1 = Re(/[) < 0 and [G(2A)I < 1 (3.8) 

the region o f  absolute stabili ty of the scheme. For  example, the region of 
absolute stability of the Euler scheme (3.2) is the interior of the unit circle 
with center at - 1  + 0i, which is the same as for the deterministic Euler 
scheme. From the region of absolute stability of a scheme we can determine 
the appropriate equidistant step size A such that an error in the approxima- 
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tion by this scheme of a particular test equation from the class (3.6) will 
not grow in subsequent iterations. Obviously, a scheme is asymptotically 
numerically stable for such a test equation if 2A belongs to its region of 
absolute stability. 

Generalizing the deterministic definition, we shall say that a stochastic 
scheme is A-stable if its region of absolute stability is the whole left half of 
the complex plane, that is, if it consists of all 2A with Re()~)< 0 and A > 0. 
Thus the implicit Euler scheme 

yah+ = A A , Yn + a ( Y , + ~ ) A + b ( Y f ) A W ,  (3.9) 

is A-stable, whereas the Euler scheme (3.2) is not. Clearly, an A-stable 
stochastic scheme will be A-stable in the deterministic sense for an ordinary 
differential equation. (4) 

The test equation (3.6) can be interpreted as a linearization of a 
damped oscillator with noise added. In this sense the concept of A-stability 
is related to additive noise. Various problems arise, however, when we 
consider multiplicative noise. For instance, if we apply the fully implicit 
Euler scheme 

.J . a+a  ( :a = Y.+~)A +b(Y .+ , )AW.  (3.10) Y. + 1 Y. 

to the 1-dimensional homogeneous linear Ito stochastic differential 
equation 

we obtain 

dX, = aX, dt + bX, dW, 

. - 1  1 

Yff = Yg ]-1 1 - a A - b d W ~  
k = O  

This expression is, however, not suitable as an approximation because one 
of its factors may become infinite. In fact, the first absolute moment 
E(t Y~[) does not exist. It seems then that fully implicit schemes such as 
(3.10) will be not practicable, except perhaps in special cases such as for a 
linear equation with a strongly attracting drift and very weak noise intensity. 
In this paper we shall thus concentrate on implicit strong approximations 
which are implicit only in those terms containing nonrandom variables 
such as A o r  A 2. 

4. S T O C H A S T I C  T A Y L O R  S C H E M E S  

Truncated stochastic Taylor expansions provide a general systematic 
means of deriving numerical schemes for stochastic differential equations. 
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These are based on the Ito-Taylor formula proposed by Wagner and 
Platen (~9"2~ or on the Stratonovich-Taylor formula presented by 
Kloeden and Platen/~~ In both of these formula functions of an Ito 
process are represented in terms of multiple stochastic integrals. It is also 
possible to derive expansions containing implicit terms, which are required 
for implicit schemes, by repeated application of these stochastic Taylor 
formulas. We shall describe this procedure in the final section of the paper, 
where we shall also indicate the proof of strong convergence of the 
proposed schemes. 

The simplest useful scheme that can be derived in this way is the Euler 
scheme (3.2). If we interpolate between it and the implicit Euler scheme 
(3.9), we obtain a family of  implicit Euler schemes 

Y , + I =  Y , , + [ a a ( Y ~ + I ) + ( 1 - a ) a ( Y n ) ] A + b ( Y n ) A W ,  (4.1) 

where e e [0, 1 ] is the degree of implicitness. We note that for c~ = 0 we 
have the Euler scheme (3.2); for ~ = 1 the implicit Euler scheme (3.9); and 
for c~=1/2 the scheme (4.1) generalizes the well-known deterministic 
trapezoidal method. Under Lipschitz and linear growth conditions on a 
and b the scheme (4.1) has the strong order ~=0.5. Moreover, c~ can be 
chosen differently for each component if desired. 

An order-l.0 strong Taylor scheme is the Milstein scheme. (ls'16) In the 
1-dimensional case it has the Ito version 

Y.+, = ~. + azl +b AW.+ �89 W.)2- J ]  

and the Stratonovich version 

Y,+ ~ = Yn + aA + b AW~ + �89 2 

(4.2) 

(4.3) 

where _a is the corrected drift from the Stratonovich equation (2.3). Here we 
have abbreviated f (Y, )  as f for any function f ,  which we shall continue to 
do in the rest of the paper. 

We mentioned in Section 3 that it generally only makes sense to 
construct schemes with the implicit terms occurring in those terms 
involving nonrandom variables such as A, but not, for instance, d W,. With 
this in mind we have a 1-dimensional implicit Milstein scheme, which has 
the Ito version 

Yn+I=- Yn-~-a(Yn+I)A-}-b AWn-~-�89 (4.4) 

and the Stratonovich version 

Y,+ ~ = Y,  + a(Yn+ t )d  + b AWn + �89 2 (4.5) 
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By interpolation in the general d-dimensinal case we obtain a family of 
implicit Milstein schemes with Ito version 

Y.+~ = Y.+  [~a (Y .+ l )+  (1 --~)a]A +bAW~+�89 

(4.6) 

and Stratonovich version 

Y.+I = Y.+  [e_a(Yn+l) + ( 1 -  e)_a]A +bAW~+�89 2 (4.7) 

where we have used the differential operator 

0 
L ' =  ~ b k -  (4.8) 

k = 1 (~xk  

All of these Milstein and implicit Milstein schemes (4.2) (4.7) have strong 
order 7 = 1.0 under sufficient regularity of the coefficients. These are 
Lipschitz and linear gowth conditions on _a, (~/~?xk)_a, b, (~?fl?xk)b, and 
(O/Oxk)Zb. 

By including further terms from the Ito-Taylor expansion, we can 
achieve a strong order 7=  1.5 with the following scheme. For the 
1-dimensional case the order-l.5 strong Taylor scheme is given by 

Yn+l = Y~+aA+bAW.+�89 

+ ba' AZ. + �89 ~ol t 2  a tt ~, .~2)zl 

(ab' + �89 W. A - AZ.) 

+ �89 [ ! (AW.)2-  A] AW~ (4.9) 3 

Here an additional random variable AZ. is required to represent the 
double stochastic integral 

AZn= f~"+~ f]i dWs~ ds (4.10) 

which is Gaussian-distributed with mean E AZ,= (AZn)=0,  variance 
E(AZ,) 2 = ( (AZ,)  2) = �89 3, and with correlation EAZnAWn = 
(AZn AWn)= �89 2. We remark that there is no difficulty in generating the 
pair (AWn, AZn) of correlated Gaussian random variables using the 
transformation 

1( 1 
Agn- -  2 
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where ~,,~ and ~,2 are independent standard N(0, 1) distributed Gaussian 
random variables. 

The corresponding implicit order-l.5 strong Taylor scheme in the 
1-dimensional case takes the form 

r . + l  = Yo + a ( Y . + , ) ~  

- l[a(Yn+l) a'(Yn+l)+ �89 2 a"(Y,+I)]A 2 

+ b  ~w, ,  + �89 W.) 2 - ~ 3  

+ (ab' + � 8 9  " - ba')(d W. A - AZ.)  

+ �89 [�89 AWn (4.11) 

Here we have made both the A and the d 2 terms in (4.9) implicit. 
In the general d-dimensional case weobtain the family of implicit 

order-l.5 strong Taylor schemes 

Yn+, = Y,, + [c~a( Y~+ 1) + (1 - ~)a]d 

+ (�89176 (1 --fi)L~ 2 

+ b dWn + Lla(AZn--~ AW~ A) 

+ L~ Wo ~ - ~zn)  + �89 w,,) 2 - ~ ] 

+ �89 W,,) 2 - 4 ]  A Wn (4.12) 

where c~, f i t  [-0, 1] and, in addition to the previously defined L ~, we have 
used the differential operator 

d ~ 1 d (~2 
L ~  ~ a k ~ bkbt 

= 1 ~ + ~ k, = 1 gxk #x--------5 

The parameters ~ and fl here can also take different values in each component 
of the vector equation (4.12). When ~ = 1/2 the A 2 term vanishes and thus 
we obtain a relatively simple stochastic generalization of strong order 1.5 
of the deterministic trapezoidal method. If we have additive noise, that is, 
with b - c o n s t ,  then the last three terms vanish and (4.12) simplifies 
considerably. Finally, we note that a Stratonovich version of (4.12) is of 
little advantage, since it already involves most of the terms appearing in the 
following order=2.0 strong Taylor scheme. 

The order-2.0 strong Taylor scheme in the 1-dimensional case has the 
form 
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Yn+ 1 1 
Yn + aA + b A W. + -bb'(A Wn) 2 

- 2 

1 , 2 +ha' ~Z.+-~_a_a A +ab'(AW~ ~ -~Z . )  

1 
+ 1 b(bb')' (A W~) 3 + ~. b(b(bb')')' (4 W.) 4 

+ a_(bb')' J(o,~,~),. + b(ab')' J(~,0,1~,. 

+ b(a_'b')' Jo, 1,o),~ 

with the multiple Stratonovich integrals 

_f yx 

--f'Cn+lffffS2OdWsldS3odmS3 J(1,o, 1),n -- zn zn 

and 

(4.13) 

The 

(4.14) 

(4.15) 

J(l,l,o),n= ;~i"+l fs] f~]odWs~odWs2 ds3 (4.16) 

integrals (4.14)-(4.16), which are random variables, can be 
approximated as accurately as needed by a method described in Kloeden 
et al. (131 (see also Kloeden and Platen(12)), which uses series expansions of 
the Wiener process. 

The 1-dimensional form of the implicit order-2,0 strong Taylor scheme 
is given by 

Yn+l  = Yn + _ a ( Y . +  1)d -~a(Y.+ 1)_d(Yn+ 1)zf 2 

+ b A W, + ~bb'(A W,,) 2 

+ (_ab' - b_a')(~ W .  ~ - ~ Z . )  

1 + 1 b(b(bb')')' (A W,,) 4 + ~. b(bb')' (A W,,) 3 

+ a_(bb')'J(o,l,1),n + b(ab') 'Jo,o,1) , .  

+ b(a'b)' 1 _ [J(1,1,O).n--~(z~Wn) 2zJ] 
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Finally, we have a family of implicit order-2.0 strong Taylor schemes 
which in the general d-dimensional case have the form 

Y~+~ = r . +  [e_a(Y.+~)+ (1-e)_a]A 

+ (~- -~)  [fl-L~ ( rn+ l) + ( 1 -  fl)-L~ A2 

+ b AWn + L~a(AZn-7 AWnA) 

1 1 2 

1 1 
+ ~. L~L'b(~ W.) 3 + ~. L'L'L'b(J wo) 4 

+ -L~ t),. + L~-L~ 

+ LXL~a_[J(,,1,o),. - �89 W.) 2 A] (4.17) 

where ~, /~ e [0, 1 ] and 
u # 

k = 1 ~ x k  

We note that for ~ = 1/2 the third term in (4.18) vanishes and for additive 
noise the 6th to the 1 lth terms are no longer needed. 

5. S T O C H A S T I C  R U N G E - K U T T A - T Y P E  S C H E M E S  

In this section we shall consider implicit schemes which avoid the use 
of derivatives in the terms involving nondeterministic stochastic integrals. 
They are obtained from the corresponding implicit strong Taylor schemes 
by replacing the derivatives there by finite differences expressed in terms of 
appropriate supporting values. For this reason we shall call them implicit 
strong Runge-Kutta schemes, but it must be emphasized that they are not 
simply heuristic stochastic adaptations of the deterministic Runge-Kutta 
schemes. (8'23) Some preliminary explicit weak schemes of this kind for 
stochastic differential equations with constant diffusion coefficients can be 
found in Chang. (3) 

For the 1-dimensional case an implicit order-l.O strong Runge-Kutta 
scheme is 

rn+l = r . + a ( r . + ~ ) ~  + b ~ w .  

1 
+ - -  [ b ( Y . ) - b ] [ A W . ) Z -  A] (5.1) 



296 Kloeden and Platen 

with supporting value 

Yn = Yn + aA + b x/-A 

By interpolating between this scheme and the corresponding explicit 
scheme we can form a family of implicit order-l.O strong Runge-Kutta 
schemes. In the d-dimensional case these have the form 

Yn+l = Yn "~ [~a(Yn+l) + (1 -oOa]A + b AWn 

1 
+ - -  [b(f . ) -b][(~JW.)2-  A] (5.2) 

with vector supporting value 

Y.= Y. + aA + b x/A 

and parameter ~ e [0, 1 ]. 
There is also a Stratonovich version 

Y.+I= Y.+[~_a(Yn+,)+(1-~)a_]A+�89 (5.3) 

with vector supporting value 

~ . = Y . + a A + b A W .  

and parameter c~ e [-0, 1 ]. We remark that we still obtain convergence with 
the strong order 7 = 1.0 if we omit the aA term in the supporting value ~ . .  

In the d-dimensional case an implicit order-l.5 strong Runge-Kutta 
scheme is given by 

t 
Y.+I = Y.+~ [a(Y.+l)+a]d+b AW. 

+ - - [ a ( Y + ) - a ( Y _ ) ]  AZ~-~AW~A 

1 
+ - - [ b ( Y + ) - b ( Y  )][(AW~)2-A] 

4 ~  - 

1 
+ ~-~ [b(Y + ) -  2b + b( Y_)](AW~A- AZ~) 

1 
+~-~ { b ( ~ + ) - b ( ~  ) -  [ b ( F + ) - b ( f _ ) ] }  

x [ ~  (AW.)2--AIAW . (5.4) 
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with supporting values 

and 

Y+ = Y~+aA+_bx/A 

~• = K_+b(F+) , , /~  

Here we have chosen the degree of implicitness c~ = 1/2, which simplifies the 
scheme. We note that for additive noise only the first four terms remain in 
this scheme. 

We shall only consider the additive noise case here for the strong 
order 7 = 2.0 scheme. Then in the d-dimensional case we have the implicit 
order-2.0 strong Runge-Kutta scheme for additive noise 

Y.+I= Y , + b A W . +  (_a(Y+)+_a(?_)-�89 (5.5) 

with 

1 1 b ?+_= Y , + ~ a A + ]  (fl+() 

where 

gAZ, 

and 

1 1 1/2AZ n \23 ~/2 

This scheme has a surprisingly simple structure in spite of its strong order 
? = 2.0. 

6. A - S T A B I L I T Y  OF S T R O N G  S C H E M E S  

We defined the A-stability of a strong scheme in terms of the mapping 
G in Eq. (3.7). It is easy to determine this mapping for the lower-order 
schemes. In particular, for the family of implicit Euler and Milstein schemes 
(3.9) and (4.6), respectively, it is defined by 

G()oA) = (1 - c~s -~ [1 + (1 - c~)RA] (6.1) 

where c~ ~ [0, 1] is the common degree of implicitness of all components. 
The inequalities (3.8) for the region of absolute stability are thus equivalent to 

(1 - 2 ~ ) ( ~  + )~)A 2 + 221A < 0 
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where 21 + i), 2. For  0 ~< ct < 1/2 we can rewrite this as 

(21A + A) 2 + ( 2 2 3 )  2 < A 2 

where A = ( 1 -  2c~) 1. Thus, the region of absolute stability is the interior 
of the circle of radius A which is centered at - A + i0, when 0 ~< e < 1/2. On 
the other hand, for 1/2 ~< c~ < 1 it is the whole left-hand side of the complex 
plane, so these schemes are then A-stable. 

The implicit order-l.5 Runge-Kutta scheme (5.4) has the same G 
function (6.1) with ~ = 1/2, so is also A-stable. 

For  the implicit order-2.0 Runge-Kutta scheme (5.5) we find that 

G ( ~ A ) = ( I + � 8 9  l ( 1 + ~ 2 A + 2 2 A 2 )  

The corresponding region of absolute stability satisfies the polar coordinate 
inequality 

4r cos z 0 +  (2+  3r 2) cos 0 +  r 3 < 0  

with �89 < 0 < 3~2 , where r = (42 + 22z)l/2A and 0--- arctan(~,2/21), so this 
scheme is not A-stable. 

The order-l.5 and -2.0 strong Taylor schemes involve the term L~ 
which is more easily determined using the real 2-dimensional form of the 
test equation (3.6) and turns out to equal )fiX in complex notation. For 
these schemes 

G(,~A)= [ 1 - ~ , ~ A -  1 

x [1 + (1 - ~ ) 2 z / +  ( �89  ~)(1 - f l )22A 2] 

and that the region of absolute stability is given by the polar coordinate 
inequality 

[2 + (1 - ~)(1 - 2~)r 2] cos 0 + 2(1 - 2~)r cos 2 0 + �88 - 2~) 2 (1 - 2/?)r z < 0 

3 with �89 < 0 < ~ .  Hence the schemes are A-stable if and only if ~ = 1/2, 
/~e [0, 1], or c~, f ie  [1/2, 1]. 

It should of course be borne in mind that the regions of stability are 
only with respect to the simple test equations (3.6). Different behavior may 
occur for more complicated equations, particularly nonlinear equations. As 
in the deterministic context, some numerical experimentation may be 
required to find an appropriate scheme for a particular equation. 

7. I M P L I C I T  T W O - S T E P  S T R O N G  S C H E M E S  

The method to be indicated in Section 8 for deriving the above explicit 
and implicit schemes can also be used to construct implicit two-step 
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schemes. We know from deterministic numerical analysis that the use of 
multistep methods allows a significant reduction in the computer time 
required for practical computations. The stochastic implicit two-step 
schemes which we shall describe here may be effective for stiff stochastic 
differential equations and offer similar advantages. 

For the 1-dimensional case we have the following /to version of an 
implicit two-step order-l.O strong scheme: 

with 

Y n + I = Y . - 1 + [ a ( Y ~ + I ) + a ] A + V . +  V. 1 

v .  = b ~Jw. + �89 W.) 2 - ~J] 

The Stratonovich version of this scheme is 

Y.+I= Y. I+[a(Yn+I)T_a]A--~V,,+V,,_I 

with 
y .  = b ~ w .  + �89 W.)  2 

and a derivative-free Stratonovich version is 

Y.+I= Yn_a+[a_(Y.+,)+gJA+_V.+_V. ~ 

with 

where 

1 
_Vn=b AWn + - ~  [b( Y . ) -  b ](AW.) 2 

(7.1) 

(7.2) 

(7.3) 

v .  = b ~ w .  + �89 W.) 2 -  ~J] 

and parameters cq, e2, 7e [0, 1]. 

with 

Yo+q  +b,/5 

There is a family of implicit order-l.O two step strong schemes for which 
the / to  version in the d-dimensional case is given by 

r n + l = ( 1 - 7 ) Y . + T Y n _ l  

+ {~2a(Y~+l) + ETcq + (1 -c~2)]a + 7(1-0~1)a(Y._I)}A 

+ Vn+TVn_l (7.4) 
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with 

The Stratonovich version of (7.4) is 

Y . + , = ( 1 - Y ) Y . §  

+ {a2_a(Yn+i) + [7al q-(1 - ~ 2 ) ] a +  7(1 -~I)a_(Y,_,)}A 

+Y.+v_v. (7.5) 

_V, = b A W, + �89 W,) 2 (7.6) 

and parameters :q, ~2, 7 e [0, 1 ]. We obtain a derivative-free version of this 
scheme if instead of (7.6) we use 

1 
V~=b AW, + - -  [b(Y~)-b](AW,) 2 (7.7) 
- 2 x f ~  

where 

We can control the stability of these schemes with an appropriate choice of 
the parameters ~1, ~2, and ~. The schemes (7.1)-(7.3) are obviously a 
special case with ~1=0,  ~2 = 1/2, and ~=  1. Different values of the 
parameters can be used in the different components of the scheme if this is 
advantageous. 

In the d-dimensional case an implicit two-step order-l.5 strong scheme 
is given by 

with 

Y,+I=Y,_I+�89  I ) ]A+Vn+V,_ I  (7.8) 

V,=b AW, + a b ' ( A W . A -  AZ,)+ a 'b(AZ, - �89  A) 

+ �89 wo)2_ ~]  + �89 1 

We have in the d-diensional case the following family of implicit two-step 
order-l.5 strong schemes 

Y . + I = ( 1 - 7 ) Y . + T Y .  

+ �89 ( l + 7 ) a + T a ( Y , _ l ) ] A  

-�89 1)~wo_1 ~ 

+ V,+TV, 1 (7.9) 
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with 

V. =b AWn+ L~ A - A Z . ) +  Lla(AZn - 1AW~ A) 

d E- 1 L I h [ ( A W n ) 2 - - A ]  -q- 1 L 1 L I b [ I ( A W n ) 2 - - z ] ]  A m  n 

with parameter 7 e [0, 1 ]. 
A derivative-free version of the above 

order-l.5 strong schemes (7.9) with 7 = 1 is 
family of implicit two-step 

Y,,+l=Y,-~+�89 1 (7.10) 

with 

Vn=bAW"+-f--~ [ a ( ~ + ) _  a ( ~ )  ] 1 

+ - -  1 
4 x/~ [b (Y +) -  b(Y2)][A W")2- A] 

1 
+-~ Eb(Y+ ) -  2b+ b(F2 )](AWnA- AZn) 

1 [ b ( ~ + ) _ b ( ~ _ ) _  [b(~+)_b(~_)]  ] +~ 

with supporting values 

and 

--+ 

r  : L + +_b(~+),j-J 

We shall see in the last section of the paper that it is also possible to derive 
analogous order-l.5 strong schemes with other degrees of implicitness than 
the 7 = 1 used here. 

As before, we shall consider only the Stratonovich versions of the 
order-2.0 schemes and restrict ourselves to equations with additive noise. 
For the 1-dimensional case we have the implicit two-step order-2.0 strong 
scheme for additive noise 

Yn+l = Yn l + 7 1 [ a - ( Y n + 1 ) + 2 a + a ( Y n - 1 ) ] A + V n + V n  1 (7.11) 
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V.=b aW. +_a'b(aZ.--1AW. a) 

+ _a"b=[J.,,,o~,. - �88 W.)~a] 

We note that if a " =  O, as in the linear case, then the final term in II. 
involving the multiple integral J(1,1,o),. vanishes. 

In the d-dimensional case there is a family of implicit two-step order-2.0 
strong schemes for additive noise given by 

Y.+~=(I-7)Y.+yYn_I 
+ l[_a(Y.+ 1)+ (1 + ~)_a + ~_a(Y._ 1)] A 

- � 8 9  1)AW. 1A 

- 4'-(1 - 7) LILI_a(~ W.) 2 ~J 

+ V . + y V .  1 (7.12) 

with 

V = b A W . + L I a ( A Z _ � 8 9  A) 1 1 I _ +L L _a[J(1,1,o),,,--~(AW,,)=A] 

where y m [0, 1 ]. This scheme simplifies considerably when 7 = 1. 

8. C O N V E R G E N C E  

The orders of strong convergence of the schemes presented in the 
preceding sections follow from a theorem in ref. 21, which is essentially a 
slight generalization of the main theorem in ref. 19. The same assertion and 
proof can also be found in ref. 12. It is based on a straightforward repeated 
application of the Ito-Taylor formula (22) or the Stratonovich-Taylor 
formula (11) combined with the mean square properties of multiple stochastic 
integrals. To be more precise, we formulate a strong convergence theorem 
for'-~the order-2.0 strong Taylor scheme (4.13) which is a consequence of 
Corollary 10.7.2 in ref. 12. 

T h e o r e m .  Let Y~ denote the value at time zn = nA of the order-2.0 
strong Taylor scheme (4.13) with step size A. Suppose that a and b are 
three and four times continuously differentiable, respectively, with all of 
these derivatives being uniformly bounded. In addition suppose that 

EIXol2= <lXol2> < oo 
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and that 

E I X o -  Y~ol 2= < l X o -  y~I25 ~ g l  Z~4 

for some constant K1 which does not depend on A. Then there 
another constant K2 < oo which does not depend on A such that 

A E max I X . ~  max I X ~ - Y , , I ) < ~ K 2  A2 
n = O , . . . , n T  n = 0,..., r~ T 

exists 

where nr= T/A. 

The conditions for the other schemes proposed above are quite similar. 
Their strong convergence is covered by corresponding theorems in ref. 12. 

For  the Stratonovich case we end up with the following d-dimensional 
family of implicit two-step expansions (8.1) which describes all of the terms 
needed in the derivation of an order-2.0 strong scheme. The other strong 
Taylor schemes can also be obtained from (8.1) by omitting those terms 
which are superfluous for the desired order of convergence. Proper 
approximation of the derivatives appearing in these Taylor schemes then 
yield the derivative-free schemes of the corresponding strong order. 

For  simplicity we shall use the abbreviations 

~Zn ~ + 1 Tn+ 1 

and f = f ( X , )  for the functions f =  a, b, L~ where X,,_ ~ is the value of 
X at rn 1. Then the announced expansion has the form 

X , + ~ = ( 1 - y ) X , , + y Y n _ l  

+ I-~2_~(x.+~)+(1-~2+wl)_a+~(1-~l)_a(X. l ) ]J  

+ {(�89 ~2) ~2-L~ 

+ E(�89 ~)(1 -/~2) + ~(�89 ~,)/~, ] t~  a 

+ 7 ( 1 - -  ~Xl)( 1 - - i l l )  - L ~  1)} A2  

- ~2Ll_a J W .  J - -  7 G q L l a ( X n _  1) A W  n_ lzl 

-- �89 2 3 

- �89 1 ) (JW._ l )2  J 

+ V . + ~ V .  1 (8.1) 

822/66/1-2-20 
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with 
1 

V, = b A W, + L~ W, ~ - AZ,}  + ~ Ll_a AZ, + ~ Llb(A W,) 2 

+ _L~ 1,1),, + LI-L~ l),, + L1LlgJ(1,1,0),n 

1 1 + ~, t lLlb(z~ Wn) 3 -~ ~, L1LILlb( A W,) 4 

+ higher-order terms 

Here the parameters ~1, a2, ill, f12, and 7 can be chosen to be any finite 
real numbers, but we have only considered interpolation schemes in this 
paper, so these parameters were restricted to have values in the interval 
[0, 1]. Furthermore, from the derivation of (8.1) it is not difficult to see 
that these parameters may differ in the different components of the 
expansion. Assuming sufficient smoothness, linear growth, or boundedness 
conditions on the drift and diffusion coefficients it is straightforward to 
apply the strong convergence theorems mentioned at the beginning of this 
section. The desired order of strong convergence of a scheme then follows 
from the moment properties of the multiple stochastic integrals appearing 
in the scheme. (22) This was done in full detail for the strong Taylor 
approximations in ref. 19. 

9. N U M E R I C A L  R E S U L T S  

Extensive and systematic numerical testing of the implicit schemes 
introduced in this paper, which will be reported elsewhere, confirm their 
better stability and convergence properties. Here we shall present some 
numerical results to provide the reader with an indication of what may be 
anticipated. For this we consider the 2-dimensional linear Ito differential 
equation with scalar noise 

where 

dXt = AXt dt + BX, dW, 

A = I - 5 5  _55] and B = 0 . 0 1 I = I 0 0 1  0.001] 

Since the matrices A and B commute, the solution (1'12) is given by 

X, = X 0 exp[(A - 1BZ)t-  BWt] 

/[--5.00005t+O.O1W, 4.99995t 1)  
= Xo exp ~[  4.99995t - 5.00005t + 0.01 W, 

(9.1) 

(9.2) 
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The Lyapunov exponents turn out to be the real parts of the eigenvalues 
of the matrix A - �89 2, that is, 

22 = - 10.00005 ~ 21 = -0.00005 

so (9.1) is quite stiff. 
With the initial value X 0 = (1, 0), (9.2) reduces to 

Xt=(�89 ;-+(,) _ ~(e e ;~ (t))) (9.3) 

where 

2 + (t) = -0.00005t + 0.01 w,, 2 - (t) = - 10.00005t + 0.01 I4/, 

We applied the numerical schemes to (9.1) with the above initial 
condition for equal time steps d over the interval [0, 1 ] and evaluated the 
absolute error at the end of the interval. We did this for M =  200 batches 
of N =  10 trajectories for each scheme and choice of time step. Let 

Ei, j = [Xr(mi, s ) -  Y~(coi, j)[ 

be the absolute eri-or for the j t h  trajectory of the ith batch and let 

1 N l M 
Ei=Nj~= Ei, j ' E=~i~= E' 

be the sample means of the ith batch and of all batches, respectively. From 
the Student's t-distribution with M - 1  degrees of freedom, the 90% 
confidence interval (E( -- ), E( + )) for the sample mean has endpoints given 
by 

($2 '~  1/'2 
E( • )= E + to.I,M 1\-~-~j 

where to.i,199 = 1.65 and the sample variance is 

I M 
$2 = - -  E (Ei-- E)  2 

M - - 1 i =  1 

The calculations were repeated for time steps A = 2  -2, 2 -3, 2 4, and 2 -5 
The confidence intervals obtained for the simulations for the different 
schemes turned out to be quite small, that is, with E( + ) - E ( -  ) < 10-4 
We plotted log2lE[ against log2 A and present nine figures here which are 
representative of the results. In each case the order of convergence can be 
easily seen from the slope of the curve in the figure. We also include tables 
of the time steps, computed absolute values E, and error bars for each 
scheme considered (Tables I-VII). 
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Tab le l .  Implicit  Euler Scheme wi th  a = O  

d Mean error E Error bar 

0.25 3.579860498 • 
0.125 0.000026558 • 
0.0625 0.000034093 • 
0.03125 0.000029013 • 

Table l l .  Implicit  Euler Scheme wi th  a = 0 . 5  

A Mean error E Error bar 

0.25 0.000079582 • 
0.125 0.000031197 • 
0.0625 0.000014515 • 
0.03125 0.000007803 • 

Table III. Implicit  Milstein Scheme wi th  a - - 0  

A Mean error E Error bar 

0.25 3.579909532 + 0.0009929449 
0.125 0.000021314 _ 0.000000028 
0.0625 0.000032007 _+ 0.000000011 
0.03125 0.000027718 __+ 0.000000008 

Table IV. Implicit  Milstein Scheme wi th  
o = 0 . 5  

A Mean error E Error bar 

0.25 0.000075755 -+-0.000000164 
0.125 0.000026418 _ 0.000000005 
0.0625 0.00000939 ___ 0.000000001 
0.03125 0.000002545 + 0.000000001 
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Table V. Implicit  O r d e r - l . 5  Strong Taylor 
Scheme w i th  g = 0.5 

d Mean error E Error bar 

0.25 0.000075642 • 
0.125 0.000026404 • 
0.0625 0.000009388 • 
0.03125 0.000002545 • 

Table Vh Implicit  T w o - S t e p  O r d e r - l . 0  
Scheme wi th  a = u --- 1.0 

A Mean error E Error bar 

0.25 0.004647822 • 
0.125 0.001145033 • 
0.0625 0.000427624 • 
0.03125 0.000181653 • 

Table VII .  Implicit  T w o - S t e p  O r d e r - l . 0  
Scheme w i th  o = 0.5 

A Mean error E Error bar 

0.25 0.003515983 • 
0.125 0.001227402 • 
0.0625 0.000436288 • 
0.03125 0.0001512 • 

The results for the implicit Euler scheme with implicitness parameters 
:q = ~2 = 0.0, 0.5, and 1.0 are presented in Figs. 1 3, respectively. We note 
that the explicit Euler scheme (c~i=0.0) does not work for step sizes 
A i> 2 - <  In contrast, the implicit Eulm schemes with ~1 = ~2 = 0.5 and 1.0 
converge for all of the considered step sizes with order 0.5 or even better. 

Analogous results for the implicit Milstein scheme with parameters 
~1 =c~2 =0.0, 0.5, and 1.0 are presented in Figs. 4-6, respectively, except 
here we observe the strong order of convergence 1.0 for the implicit 
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Fig.  1. Impl ic i t  Eu ler  s c h e m e  wi th  ~ = 0. 

versions with ~ = 0 . 5  and 1.0. The order-l.0 Runge-Kutta scheme gave 
similar results to those of the Milstein scheme, so they have not been 
included here. 

More interesting is Fig. 7 for the order-l.5 implicit strong Taylor 
scheme with c~ = 0.5, which shows an order of strong convergence at least 
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as large as 1.5. Similar results were obtained for the order-l.5 strong 
implicit Taylor scheme with e = 0.5. 

Figure 8 contains the results for the order-l.0 implicit two-step scheme 
with parameters c~= 7 = 1.0, where the Milstein scheme was used as the 
starting routine. Finally, Fig. 9 gives the result for the order-l.5 implicit 
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Fig. 5. Implicit Milstein scheme with e = 0 . 5 .  

two-step scheme with ? = 1.0, where the order-l.5 implicit strong Taylor 
scheme was used as the starting routine. 

Comparing the simulations for this example, we see that best results 
are obtained with the implicit Milstein scheme with c~,. = 0.5, the order-l.5 
implicit strong Taylor scheme with c~i=0.5 , and the order-l .0 implicit 
two-step scheme with 7 = 1.0. 
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Fig. 6. Implicit Milstein scheme with c~ ~ 1.0. 
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The results provide a clear indication of the order of convergence of 
the schemes and of the improvement in stability obtained by using an 
implicit scheme. Note that Euler, Milstein, and order-l.0 Runge-Kutta 
schemes with ~ i = 0  are in fact fully explicit schemes and are highly 
unstable for insufficiently small step sizes. 
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Fig. 9. 
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Implicit order-l.O two-step scheme with ~ = 0.5. 

10. C O N C L U D I N G  R E M A R K S  

All of the schemes that we have introduced in this paper follow from 
the general expansions formula (8.1). Other strong schemes, including 
derivative-free ones, can also be derived from (8.1). This, however, is more 
conveniently done for special classes of stochastic differential equations 
which allow simplifications in the formulation of the schemes. In principle the 
schemes presented above can be generalized to the case of a multidimensional 
Wiener process driving the stochastic differential equation. However, the 
schemes then include multiple stochastic integrals which can be 
approximated by, for example, the method proposed in Kloeden e t  aI. ~13~ 

A fundamental difference in the analysis of deterministic and stochastic 
numerical schemes is that the latter need not only have sufficient smoothness 
of the coefficients, but must also include higher-order multiple stochastic 
integrals in order to achieve a higher order of convergence. The inclusion 
of multiple stochastic integrals in higher-order stochastic numerical 
schemes is dictated by the necessity of approximating the Wiener chaos to 
the desired order. Heuristic adaptations of deterministic numerical 
methods, such as the deterministic Runge-Kutta methods, usually have not 
included such multiple stochastic integrals and so cannot in general achieve 
a higher order of strong convergence than the stochastic Euler scheme. The 
stochastic Taylor formula provides the appropriate tool for the derivation 
of higher-order stochastic numerical schemes. 
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The implici t  schemes tha t  have been used by o ther  au thors ,  such as 
K l a u d e r  and Petersen,  (8) Petersen,  (18~ D r u m m o n d  and  Mor t imer ,  ~5) Smith  
and  Gard ine r ,  ~24) and  McNei l  and  Craig,  ~14) in s imula t ion  studies are 
all inc luded in our  classes of schemes, being in fact s impler  lower -o rde r  
representat ives .  These au thor s  inves t iga ted  the s tabi l i ty  and  efficiency of 
their  schemes for pa r t i cu la r  test equa t ions  of interest  to them. The 
add i t i ona l  schemes p r o p o s e d  in this pape r  are h igher -o rder  one-s tep or  
two-s tep  schemes, and  so offer po ten t ia l ly  greater  efficiency and  stabil i ty.  
A deta i led  s tabi l i ty  analysis  of the p r o p o s e d  two-s tep  schemes and  mult i -  
s tep schemes in general  was beyond  the scope of this paper .  
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